Русский язык

История

Биология

Математика

 

Тутанхамона лишил жизни укус комара. Комар заразил его — великого фараона, властителя Египта — малярией, болезнью, сопровождающейся высокой лихорадкой, от которой может умереть человек с ослабленным здоровьем. Тутанхамон же был очень слаб. С самого рождения у него были больные кости, и передвигаться он мог только на костылях. С детства же у Тутанхамона был сильно искривлен позвоночник. Возбудитель малярии шутя справился с хрупким молодым человеком, ставшим фараоном в девятилетнем возрасте и царствовавшим на протяжении всего лишь десяти лет.

Когда в 1922 г. английский археолог Говард Картер и его коллеги обнаружили гробницу несчастного фараона, они были изрядно воодушевлены и обрадованы: в отличие от гробниц многих других фараонов, эта оказалась практически нетронутой. Сокровища других гробниц были тысячи лет назад присвоены грабителями могил. Грабители хотели обчистить и гробницу Тутанхамона — украсть оттуда все золото и драгоценные украшения, — но что-то помешало их намерениям. Они побросали награбленное и в спешке бежали от гробницы. Таким образом, Картер открыл практически нетронутым внутреннее убранство захоронения. В свете факелов и фонарей во тьме склепа сверкнуло золото, ожидавшее своего открытия 3244 года — столько лет к тому времени прошло после смерти фараона.

Подробнее...

 

В Египте сведущие в числах жрецы наблюдали Сириус, а астрономы Междуречья, пустынной области, по которой протекают две животворящие реки Евфрат и Тигр, следили за движениями двух самых ярких тел небосвода — Солнца и Луны. Оба светила восходят на востоке, на юге достигают наивысшего положения на небосклоне, а затем исчезают за горизонтом в западном направлении. Сегодня мы знаем, что это кажущееся движение видится нам благодаря тому, что Земля вращается вокруг своей оси в направлении с запада на восток. Вследствие этого весь небесный свод за двадцать четыре часа совершает кажущееся движение по замкнутому кругу в направлении с востока на запад.

Помимо этого, Солнце и Луна находятся на небосклоне не в одних и тех же фиксированных местах, а движутся по небесной сфере вдоль расположенных очень близко друг к другу окружностей, которые проходят через двенадцать созвездий: Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей и Рыбы. Окружность на небесной сфере, вдоль которой движется Солнце в течение года, называется эклиптикой. Слово это происходит от греческого слова ἐκλείπειν — «исчезать».

Подробнее...

 

Умение оперировать числами было в древние времена вратами, ведущими к богатой и беззаботной жизни. Важный шаг в этом направлении сделали древнеегипетские землемеры. Они умели оперировать с числами, большими дюжины и доходившими до нескольких сотен. Нужно было уметь считать в таких пределах для того, чтобы нарезать крестьянам участки полей определенной длины и ширины.

Кроме того, счета в этих пределах хватало для того, чтобы подсчитывать число мешков зерна, поставленных крестьянами. Считали также число запряженных быками телег, доставлявших урожай в житницы. Однако высших ступеней богатства и влияния достигал тот чиновник или писец Древнего Египта, который умел оперировать числами, превосходившими несколько сотен или даже тысячу. Такой чиновник мог рассчитывать на место при дворе верховного владыки — фараона.

Подробнее...

 

Около 1550 г. один из самых талантливых вычислителей, живших к северу от Альп, уроженец Штаффельштайна близ Бамберга по имени Адам Ризе, изрядно попортил доходный бизнес своих коллег по цеху. Дело в том, что Ризе опубликовал книгу — написанную по-немецки, чтобы ее могли прочитать все горожанки и горожане, — в которой он описал способы вычислений, включая умножение и деление.

В первой главе, озаглавленной Numerirn («Числа»), Адам Ризе объясняет, что для расчетов следует использовать не громоздкую запись чисел римскими цифрами, а более простую и удобную запись. Ризе с великим тщанием объясняет читателям суть арабских цифр 1, 2, 3, 4, 5, 6, 7, 8 и 9, обозначающих первые девять натуральных чисел. Далее Ризе поясняет, что для записи больших чисел необходима еще и десятая цифра — ноль, и посвящает своих читательниц и читателей в тайну десятичной системы счисления: значение каждой цифры в записи числа зависит от позиции цифры. Например, в числе 4205 пять стоит в позиции единиц, ноль — в позиции десятков, 2 — в позиции сотен, а 4 — в позиции тысяч. На этом же примере Ризе объясняет, как велика в записи роль нуля, ибо 4205 — это совсем иное число, нежели 425, или 4250, или, допустим, 42050.

Подробнее...

 

Знаменательно, что самая известная история, в которой главную роль играет громадное число, родилась в Индии, в стране, где были изобретены ноль и позиционная система счисления. Это история о рисовых зернах и шахматной доске. У этой истории множество вариантов. В сказочном изложении она выглядит так.

Давным-давно, в незапамятные времена, один молодой магараджа правил огромной процветающей страной. Однажды магараджа влюбился в прекрасную принцессу. Они поженились. Перед счастливой парой открывалось безбрежное и чудесное будущее. Магараджа мудро управлял своей страной; крестьяне собирали богатейшие урожаи риса, а все подданные магараджи жили в достатке и довольстве. Но судьба оказалась жестокой к магарадже и его магарани. Она тяжело заболела, ни один врач не смог помочь ей, и через несколько дней она умерла. В стране воцарился глубокий траур, но больше других горевал овдовевший магараджа. Скорбь его была безмерна, и ничто не могло ее облегчить.

Подробнее...

 

Никто точно не знает, как появились числа в первобытные, доисторические времена. Но можно с полной уверенностью утверждать, что первыми открытыми человеком числами стали не один и не два. Люди не могли считать единицами и двойками. Два одинаковых предмета человек воспринимал как пару. Для того чтобы сосчитать эти предметы, человеку не надо было тыкать в них пальцами со словами: «Один, два». Вероятно, «три» было первым и поначалу единственным числом. Первобытный человек видит пару предметов и еще один присоединенный к ней предмет.

Таким образом, «три» — это «пара плюс один». Судя по всему, человеку, стоявшему лишь на пороге мышления, стоило большого труда умственно постичь суть этой операции. Три было для него очень много; недаром во французском языке родственны между собой слова très, обозначающее «очень», и trois, обозначающее «три». Четвертый предмет превосходил воображение человека каменного века. Такое количество уже обозначали словом «много». С такой точки зрения можно думать, что три в те незапамятные времена было не только первым, но и самым большим числом.

Подробнее...

 

Как только люди перешли к оседлому образу жизни, они очень быстро выучились основам геометрии. Людям хотелось знать, насколько велики участки земли, которые они обрабатывали: земледелец видит перед собой участок земли; для того чтобы его измерить, он сравнивает его длину и ширину с некой мерой длины, например с маховой саженью, которая представляет собой расстояние между кончиками пальцев обеих рук при их разведении в стороны. Если его прямоугольная грядка имеет в ширину одну сажень, а в длину — семь, то земледелец понимает, что он так же богат, как и его сосед, у которого есть квадратная грядка четыре на четыре сажени. Периметр обеих грядок составляет 16 саженей, и оба крестьянина думают, что их грядки одинаковы. Поначалу древний земледелец не понимает, что его сосед при этом снимает со своей грядки вдвое больший урожай. По прошествии некоторого времени человек начинает понимать, что дело не в периметре, а в площади грядок, и находит разрешение загадки: на его узкой прямоугольной грядке умещается семь квадратов со стороной в одну сажень, а на грядке соседа можно уложить аж шестнадцать таких квадратов, то есть результат умножения четырех на четыре.

Подробнее...

 

Окружность длиной 40 тысяч километров уже трудно представить себе наглядно, и воображение совершенно нам отказывает, если мы оставим Землю и обратимся к расстояниям космического масштаба. Вскоре после того, как Эратосфен совершил свой научный подвиг, астроном Гиппарх измерил расстояние от Земли до Луны. Это измерение было основано на оценке следующих наблюдений: во время лунного затмения тень Земли покрывает диск луны. Край тени Земли на диске имеет форму окружности — кстати говоря, именно этот факт послужил для Аристотеля доказательством шарообразной формы Земли, ибо только шар во всех своих проекциях отбрасывает на предметы круглую тень.

Если во время лунного затмения взять монету достоинством 1 евро и начать рассматривать ее на расстоянии вытянутой руки (то есть на расстоянии приблизительно 75 сантиметров), очертания края монеты точно совпадут по размеру с краем земной тени на диске Луны. Длина окружности монеты равна приблизительно 75 миллиметрам, а монета удалена от глаза на расстояние, превышающее длину окружности в десять раз, то есть из этого можно заключить, что Луна удалена от Земли на расстояние, приблизительно в десять раз превышающее окружность Земли, что соответствует 400 тысячам километров.

Подробнее...

 

Огромные расстояния космоса побудили Архимеда к тому, чтобы вычислить самое большое число, существующее на Земле. Архимед придерживался того мнения, что, несмотря на некоторый смысл, все же было бы бесполезно говорить о числах, больших, чем число самых мелких частиц, которые могут уместиться во всей Вселенной.

По мнению Архимеда, самая мелкая из всех частиц — песчинка. Вероятно, что все же в виду имелась пылинка, потому что Архимед исходил из мысли о том, что в маковом зернышке может поместиться не больше десяти тысяч песчинок. Если положить рядом 25 маковых зернышек, то получится ширина пальца. Для верности Архимед несколько уменьшил размер макового зернышка и сделал его таким, что сорок зернышек, положенных в ряд, составят отрезок длиной один сантиметр. Представим себе маковое зернышко в виде куба с длиной ребра четверть миллиметра. Значит, объем этого кубика будет равен 0,016 кубического миллиметра. Архимед сделал его еще меньше, приравняв к 0,01 кубического миллиметра. Это зернышко может вместить десять тысяч песчинок. Таким образом, песчинка, которая, по Архимеду, является самой мелкой частицей во Вселенной, имеет крошечный объем, равный 0,000001 кубического миллиметра. Другими словами, в одном кубическом миллиметре может уместиться миллион песчинок.

Подробнее...

 

Но вернемся, однако, в обыденный мир. Конечно, с нашей повседневной жизнью астрономические величины не имеют ничего общего, но размышления о том, как Архимед и современные ему эпигоны работали с приблизительными оценками, представляют интерес и помимо забавных историй о дециллионах и унтригинтиллионах. Умные головы всегда выделялись тем, что хорошо умели прикидывать порядок величин. Волшебником таких оценок был родившийся в Риме и умерший в 1954 г. в Чикаго физик-теоретик Энрико Ферми. На его примере можно научиться тому, что искусство применения математики заключается не в том, чтобы производить безошибочные расчеты, а скорее в том, чтобы минимизировать неизбежные ошибки, держать их, так сказать, в узде.

«Сколько в Чикаго настройщиков пианино?» — спросил однажды Ферми обескураженного таким вопросом студента. Естественно, студент не имел об этом ни малейшего понятия. Однако Ферми знал, как можно приблизительно оценить их число: в Чикаго проживают четыре миллиона человек.

Подробнее...

 

Мы знаем о жизни Архимеда очень мало. Доподлинно известно, что в 212 г. до н. э., когда Архимед был уже стариком, его убил какой-то римский солдат. В тот год Сиракузы, где жил Архимед, были в ходе Второй Пунической войны захвачены Римом. Однако то, что в тот момент Архимеду было 75 лет, — всего лишь предположение. Также красивой легендой является рассказ о том, что убийца обнаружил ученого сидящим в атриуме дома и размышляющим над геометрическими фигурами, начерченными на песке. Солдат по неосторожности наступил на чертеж. Архимед будто бы прикрикнул на римлянина: «Не топчи мои круги!» Взбешенный этим замечанием солдат тотчас схватился за меч. В более трогательном варианте рассказывают, что Архимед, чтобы успеть закончить доказательство, просил солдата подождать, но жестокий варвар все равно сразу его убил.

Подробнее...

 

Второе допущение более правдоподобно и больше соответствует образу Архимеда. Сиракузцы называли его «мечтателем». Если он начинал заниматься какой-то проблемой, то его было практически невозможно от нее отвлечь. Он забывал даже о столь дорогой сердцу греков гигиене и чистоте. Греческие граждане любили ходить в бани, где принимали ванны, а рабы часами массировали их тела и умащали маслами и благовониями, а сами они предавались беседам на политические и торговые темы или просто болтали о пустяках. Но не таков был Архимед, особенно если его ум был занят решением какой-либо математической головоломки. Даже сопровождая своих друзей в баню, Архимед, прежде чем лечь в ванну, захватывал пальцами горсть золы, а потом писал на плитках стены математические символы и чертил геометрические фигуры. На все остальное он просто не обращал внимания.

Этот образ заставляет вспомнить известную историю о том, как был открыт закон о выталкивающей силе, действующей на погруженное в воду тело. Рассказывают, что, открыв эту закономерность, Архимед, забыв одеться, выпрыгнул из ванны и поспешил домой, крича: «Эврика! Нашел!»

Подробнее...

 

О том, насколько ожесточенным бывает спор из-за приоритета, можно судить по спору, потрясшему в свое время математический мир. Речь шла о том, кого следует называть первооткрывателем «исчисления», как в старину называли математический анализ бесконечно малых величин. Речь, между прочим, шла о поистине великом открытии.

«Исчисление» позволило вычислять скорость неравномерного криволинейного движения. С помощью «исчисления» можно выяснять, как ведут себя так называемые динамические системы — в астрономии планетные системы, в технике — механические или электрические колебания, в метеорологии потоки воздушных масс в атмосфере, в экономике — биржевые курсы валют. «Исчисление» дает возможность вычислять площадь поверхностей, ограниченных кривыми линиями, объемы фигур, ограниченных криволинейными поверхностями. На все эти вопросы дает ответ анализ бесконечно малых величин.

Так кто же открыл «исчисление»?

Подробнее...

 

Наряду с Междуречьем Египет был страной, где возникла одна из первых в истории человечества высокая культура. Подобно многим другим народам на заре времен, египтяне верили во множество богов, определявших судьбы людей и мира. Пантеон египтян был безмерно велик и сложен: согласно одной из многих традиций, Атум был богом солнца, Шу — богом воздуха, Тефнут — богиней влаги, Геб — богом земли, Нут — богиней неба, а божества Исида, Осирис, Сет, Нефтида были правнуками Атума. Гор, сын Исиды и Осириса, являлся наиболее почитаемым из всех египетских богов. Фараон считался воплощением Гора на Земле. Глазами Гора были солнце и луна, причем луну называли уджатом — святым оком Гора.

Сказание гласит, что Сет, брат Осириса, во время борьбы за трон Осириса, вырвал этот глаз у Гора. Тот, мудрый бог луны, покровитель наук и письменности, увидел бесчисленное множество частей, больших и малых, этого глаза, и попытался их воссоединить.

Подробнее...

 

Все же это горький жребий — быть греческим богом, особенно в одном из образов, нарисованных Гесиодом или Гомером в их фантастических повествованиях. Боги греков (и просвещенные греки времен Платона, естественно, это знали) были воплощением мерзости: прежде всего, неугомонный женолюб отец богов Зевс; преследующая его ревнивица Гера; рожденная из морской пены Афродита, кружившая головы как богам, так и простым смертным; рожденная из головы Зевса, вечно девственная и злобная Афина; мрачный бог подземного мира Аид и заключенная в его царстве теней, пребывающая в полном отчаянии Персефона. Все эти и множество других богов и полубогов суть плоды необузданной фантазии. Все они — не более чем выдумка. Выражаясь современным языком, Гомер и Гесиод на глазах просвещенных греков изобрели то, что сегодня называют мыльными операми: на Олимпе, на горе, где обитают боги, разыгрываются бесконечные интриги, трагедии и комедии, которым — как и в обычных мыльных операх — нет конца. Разница между людьми и богами, как мы слышим от находчивых поэтов, заключается лишь в том, что одни смертны, а другие — бессмертны.

Подробнее...

 

Один, два, три и так далее. Так образуются числа, причем все числа. Счет начинают с единицы и прибавляют к каждому полученному последнему числу еще единицу. Так переходят от единицы к двум, от двух к трем и так далее.

За этим «и так далее» прячется бездонная пропасть.

У ряда чисел нет конца. К каждому числу можно прибавить единицу, а значит, последнего числа просто не существует.

Когда маленькие дети учатся считать, они очень гордятся своими достижениями — например, сначала они учатся считать до десяти, а потом перешагивают этот рубеж и доходят в счете аж до двадцати. Как только ребенок достигает числа 21, ему приходится выучить названия последовательности числительных, выражающих десятки. Многие дети начинают монотонно, на собственный мотив, напевать счет от единицы до ста включительно. Поняв, что на сотне числа не заканчиваются, дети с воодушевлением начинают считать дальше, и только усталость (их самих или их родителей) может положить этому счету конец.

Подробнее...

 

Считать можно быстрее, если называть только четные числа 2, 4, 6, 8, 10, … и пропускать нечетные. Человечеству потребовалось долгое время на то, чтобы научиться считать парами. Другие связки чисел — тройки, четверки и так далее — пока не использовались. Это предположение подтверждается лингвистическими данными. Когда мы говорим о числах, которые без остатка делятся на два, мы называем их «четными», но у нас нет такого же наименования для чисел, которые без остатка делятся на три, и в то время как число, которое при делении на два дает остаток, равный единице, мы называем «нечетным», у нас нет особого наименования для чисел, которые при делении на три давали бы остаток, равный единице или двум.

Если счет двойками даже маленькие дети усваивают с быстротой молнии, то им с намного большим трудом дается счет числами, которые делятся на три, четыре и большие числа. Однако для того, чтобы усвоить малую таблицу умножения, они должны наизусть выучить «последовательность троек» 3, 6, 9, 12, 15, …, «последовательность» четверок 4, 8, 12, 16, 20, … и все другие последовательности вплоть до «последовательности девяток» 9, 18, 27, 36, 45, …. Только добравшись до «последовательности десяток» 10, 20, 30, 40, 50, …, мы испытываем чувство облегчения, ибо счет десятками так же прост, как и счет единицами.

Подробнее...

 

Платон считал, что в идеальном городе должно быть 5040 граждан. Никто не знает, почему их должно быть именно столько. Одна из причин может заключаться в том, что число 5040 является произведением первых семи натуральных чисел: 1 × 2 × 3 × 4 × 5 × 6 × 7 = 5040. Вторая причина может заключаться в том, что произведение чисел от 7 до 10 — Пифагор, между прочим, называл число десять «числом совершенства» — в точности равно 5040. То есть 7 × 8 × 9 × 10 = 5040.

В любом случае древние греки умели перемножать сомножители числом более двух. Если же эти сомножители представляют собой одно и то же число, то говорят о степени этого числа. Рассмотрим, например, число 7. Вот его степени, не считая самого числа 7:

7 × 7 = 49, 7 × 7 × 7 = 343, 7 × 7 × 7 × 7 = 2401,

7 × 7 × 7 × 7 × 7 = 16 807…

Очевидно, что величины степеней числа, большего единицы, растут очень быстро. Кроме того, с первого взгляда очень трудно определить, сколько раз было умножено какое-либо число само на себя после того, как число умножений переваливает за четыре. Поэтому математики приняли изобретенный еще в XIV в. английским кардиналом, богословом и философом Томасом Брадвардином способ написания: справа над числом пишут индекс, показатель степени, каковой сообщает нам, сколько раз умножается число само на себя. То есть мы можем записать:

71 = 7, 7² = 49, 7³ = 343, 74 = 2401, 75 = 16 807…

Подробнее...

 

Если число 1,17 = 1,9487171 щедро округлить, то мы получим число, почти равное 2. Это означает, что при процентной ставке 10 процентов за семь лет первоначальный долг почти удвоится. Но что будет при иной процентной ставке? Допустим, что некий банк дает деньги под два процента годовых. Для того чтобы подсчитать, за сколько лет первоначальный долг удвоится, нам понадобится лишь степенной ряд, начиная с числа 1 + 2 % = 1 + 2/100 = 1 + 0,02. Сначала величины членов ряда увеличиваются медленно: при округлении каждый раз до двух знаков после запятой

1,02² = 1,04, 1,02³ = 1,06, 1,024 = 1,08, 1,025 = 1,10.

Этот расчет показывает, что через пять лет при двух процентах годовых первоначальный долг увеличится на 10 процентов. То есть на столько, на сколько при десяти процентах годовых первоначальный долг увеличивается за один год. Поэтому при процентной ставке два процента до удвоения первоначального долга проходит в пять раз больше времени, чем до удвоения первоначального долга при годовой ставке в десять процентов. Другими словами, при ставке два процента долг удвоится через — семь на пять — тридцать пять лет. Возьмем карманный калькулятор, посчитаем точно и убедимся, что 1,0235 = 1,999889552…, то есть практически двум. То, что касается долгов, точно так же касается и капитала, который кладут на банковский счет под определенный процент.

Подробнее...

 

С изобретением степеней математика получила в свое распоряжение очень мощный инструмент обозначения чисел, которые немыслимо получать с помощью умножения, не говоря уже о сложении. Дело в том, что степень тоже можно возвести в степень, получив так называемую степенную башню, например

5

Для начала надо заметить, что существует два способа прочтения этой степенной башни. При первом из них сначала возводят пять в четвертую степень и получают 625, а затем это число возводят в третью степень, то есть 625³ = 244 140 625. В этом случае результат представляют как

(54)³ = 625³ = 244 140 625.

Подробнее...

 

Число, вынесенное в подзаголовок, несколько больше четырех с четвертью миллиардов. Даже находясь под впечатлением числовых монстров Кнута, мы понимаем, что это довольно значительное число. Особенно сильно оно впечатляет, если представить его в виде денежных купюр. В мире не так уж много людей, чье личное состояние превосходит четыре миллиарда евро. Напротив, министры финансов ежедневно оперируют подобными суммами. При этом они чаще говорят о «приблизительно 4,3 миллиарда», щедро, с избытком, округляя эту величину на какие-то жалкие пять миллионов. Правда, чиновники Министерства финансов являются, не в пример своим начальникам, куда более педантичными. В 1920-х гг.

4,3 миллиарда марок, наоборот, считались смехотворно малой суммой. В ноябре 1923 г. в Германии на 10 миллиардов марок можно было купить разве что почтовую марку. Купюрами достоинством в миллионы марок в ту холодную осень буквально растапливали печки. 297 марок в конце приведенной выше суммы не стоил, наверное, даже во́лос. 16 ноября 1923 г. за сумму, в тысячу раз большую, чем 4,2 миллиарда марок, то есть за 4,2 триллиона марок, можно было купить целый доллар.

Подробнее...

 

Во Франции времен кардинала Ришелье, когда знатные люди и богатые буржуа имели достаточно досуга для бесполезных, на первый взгляд, занятий, некоторые из них по-любительски — в лучшем смысле этого слова — занимались проблемой простых чисел. К числу таких людей принадлежали работавший на монетном дворе чиновник Министерства финансов Бернар Френикль де Бесси, образованный монах ордена «минимов» Марен Мерсенн и адвокат и парламентский советник Пьер де Ферма. Все они главным образом пытались отыскать формулу, согласно которой можно было бы получать простые числа.

Один из обманчивых рецептов, разработанный ими, гласил: для того чтобы получить простое число, надо взять число, сложить его с его квадратом и с числом 41. На первый взгляд такой принцип выглядит многообещающе. Действительно, если взять единицу, прибавить к ней квадрат единицы, то есть 1, а затем 41, то получится 43 — простое число. Если взять 2, то его квадрат равен 4. При сложении обоих чисел с 41 получится простое число 47. Взяв 3, мы получим 53, также простое число. Далее, если взять 4 и 5, то получатся тоже простые числа — 61 и 71 соответственно.

Подробнее...

 

Мы сейчас переместимся во времена холодной войны, когда, с точки зрения спецслужб, мир еще находился в полном «порядке». Британцы и американцы были на Западе, русские — на Востоке, а между ними был — казалось, навечно — воздвигнут железный занавес. Этот занавес делил мир пополам, и это деление казалось незыблемым.

То была эпоха героя ранних романов Джона ле Карре Джорджа Смайли, превосходно воплощенного в сериалах Би-би-си «Шпион, выйди вон» (1979) и «Команда Смайли» (1982) сэром Алеком Гиннессом, а в блестящей экранизации первой из этих книг — актером Гэри Олдменом.

Когда-то, в конце 1930-х и в 1940-х гг., британская Интеллидженс — лучшее название не пришло в голову основателям секретной службы, которую они сами позже называли не иначе, как «Цирком», — с Джорджем Смайли, своим лучшим агентом, несомненно сражалась на стороне добра — против Гитлера, а потом, когда после его разгрома Советский Союз из союзника превратился в противника, — против Сталина. Но теперь, в 1970-х, в глазах Смайли некогда героическая борьба превратилась в циничную игру. Морально окрашенные притязания, позволявшие агентам держаться на плаву, все больше и больше выхолащивались.

Подробнее...

 

Сразу возникает закономерный вопрос: как смог Цирк прислать Смайли «модуль 221» и «степень 11» и при этом сделать так, чтобы об этом не пронюхали восточные шпионы? Ответ прост: ни Цирку, ни Смайли не надо было тратить силы на то, чтобы удержать в тайне оба этих числа. Их мог знать кто угодно. Не только Смайли, но и Карла, его заклятый противник, который, сидя в далекой России, дергал за ниточки, управлявшие всей работой советских спецслужб. Карла тоже знает, что делает Смайли для того, чтобы надежно зашифровать номер агента с помощью модуля 221 и степени 11.

Смайли же начинает вычислять.

Вычисления Смайли на первый взгляд кажутся весьма своеобразными, ибо в результатах у него может появиться 221 число — столько диктует ему модуль, а именно числа:

0, 1, 2, 3, 4, …, 216, 217, 218, 219, 220.

Подробнее...

 

Что, однако, можем мы теперь спросить, помешает русским агентам посчитать результат так же, как считал его Тоби? Ведь они же знают, не хуже Цирка, модуль 221 и экспоненту 11, а также отправленное Джорджем Смайли кодовое число 184. Что мешает им вычислить остаток от деления числа 18435 на 221?

Дело в том, что они не знают секретную экспоненту 35.

Но не могут ли они, зная модуль 221 и показатель степени 11, вычислить секретную экспоненту 35? Ведь каким-то образом это удалось сделать яйцеголовым из Цирка, которые затем заперли в сейф бумажку с этим заветным числом.

Надо сказать, что вообще-то это возможно. И нет никакой тайны в том, как именно получили число 35. Во всяком случае, ее нет, если знать, что 221 есть результат перемножения двух простых чисел 13 и 17: 13 × 17 = 221. Все остальное очень просто. Далее следуют такому «рецепту»: из обоих простых чисел вычитают по единице и получают соответственно числа 12 и 16, а затем перемножают их: 12 × 16 = 192. Это число 192 является «секретным модулем».

Подробнее...

 

Это снова возвращает нас к нашей вымышленной истории: к Джорджу Смайли, находящемуся по ту сторону железного занавеса, к агенту 007, с которым так хотел встретиться Смайли, к Тоби Эстерхази из службы дешифровки и к Биллу Хейдону, небожителю с верхнего этажа Цирка. История приобретает трагический оттенок, когда выясняется, что Билл Хейдон — двойной агент. За десять лет до описанных событий он был завербован Карлой и обязался шпионить в пользу Советского Союза. Брутальность холодной войны разрушила все иллюзии Хейдона относительно того, что он воюет за правое дело; по его мнению, Британская империя развалилась, а британские разведчики превратились в ручных пуделей американского ЦРУ. Такое положение глубоко ненавистно надменному джентльмену Биллу Хейдону. С конца 1950-х гг. он становится «спящим» агентом, ожидающим времени, которое Карла сочтет подходящим. Подходящим для передачи Карле секретных сведений.

Естественно, в зашифрованном виде.

Подробнее...

 

Задолго до изобретения метода RSA, в начале ХХ в., инженер Гилберт Сэндфорд Вернам изобрел способ шифрования, который генерал-майор американской армии Джозеф Освальд Моборн довел до совершенства и окрестил «одноразовым блокнотом» (one-time-pad, OTP). Дело в том, что изначально для шифрования использовались блокноты, из которых после каждого составления шифровки вырывали страницу и тут же уничтожали ее. То есть ее использовали только один раз, отсюда и слово «одноразовый» в названии.

Метод OTP в сравнении с методом RSA обладает многими недостатками, главный из которых заключается в том, что как отправитель, так и получатель шифрованного послания знают, как его зашифровать и расшифровать. Имея в своем распоряжении метод RSA, озабоченный благополучием своих агентов Цирк едва ли разрешил бы Джорджу Смайли воспользоваться методом OTP для того, чтобы пригласить на встречу агента 007.

Подробнее...

 

Альфа и омега успешного шифрования по способу одноразового блокнота заключается в том, что в последовательности цифр

1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8…,

записанной на клочке бумаги, спрятанной в подошве ботинка Смайли, нет никакой закономерности. Цифры следуют друг за другом совершенно случайным образом. Эта последовательность эквивалентна шуму, который мы слышим из динамика радиоприемника, когда он не настроен на волну определенной радиостанции. Осмысленное донесение Смайли начальству Цирка теряется в этом белом шуме только благодаря тому, что из значимого числа — а значимое число и есть донесение — путем сложения по модулю десять осмысленного числа с числовой последовательностью, записанной на листке Джорджа Смайли, получается лишенная какой-либо закономерности цифровая последовательность.

Подробнее...

 

Если разделить на карманном калькуляторе 22 на 7, то на восьмиразрядном дисплее появится следующий результат:

22 ÷ 7 = 3,1428571.

Если воспользоваться более мощным прибором с 16-разрядным дисплеем, то получится:

22 ÷ 7 = 3,142857142857143.

Это наводит на предположение о том, что цифровая последовательность после числа 3 и запятой, а именно

1 4 2 8 5 7 1 4 2 8 5 7 1 4 2 8 5 7 1 4 2 8 5 7 1 4 2 8 5 7 1 4 2 8 5 7 1 4 2 8 5 7…

представляет собой бесконечную последовательность. Следовательно, математики уже путем простого арифметического действия, деления, могут производить бесконечные цифровые последовательности. Правда, данная последовательность не годится для шифрования по методу одноразового блокнота. В этой последовательности с первого взгляда прослеживается закономерность, уничтожающая всякую случайность.

Подробнее...

 

Теперь мы снова обратимся к цифровым последовательностям, которые возникают в результате деления. Оказалось, что при делении на очень большие числа иногда приходится очень долго ждать того момента, когда в последовательности цифр вдруг начинает проступать повторяемость и периодическая закономерность. Так как не всегда легко отыскать подходящий большой делитель, да и само деление бывает достаточно трудоемким, мы решили отказаться от идеи создавать таким способом случайные цифровые последовательности.

Но целиком и полностью ее отбрасывать все же не стоит. С помощью деления мы как будто бы перепутываем цифры. Впрочем, оставим на время деление и сосредоточимся на перемешивании.

Подробнее...

 

Американцы Кен Дженнингс и Брэд Раттер считаются лучшими участниками викторин, устраиваемых на телевидении. В 2004 г. Кен Дженнингс 74 раза подряд победил в самой популярной игре такого рода «Jeopardy!». Однако после этого он проиграл Брэду Раттеру, который сумел набрать больше очков. Выиграть в шоу «Jeopardy!» могут люди, обладающие недюжинными познаниями в разных областях и быстрой реакцией, но в первую очередь им необходимо обладать незаурядной фантазией, чтобы комбинировать между собой самые неожиданные понятия. Задания «Jeopardy!» проверяют не только знание фактов, они весьма хитроумны и изысканны. Только очень сообразительные люди могут мгновенно дать ответ на такой, например, вопрос: «Что это — наше вежливое признание схожести другого человека с нами?»

Правильный ответ: «Восхищение».

Подробнее...

 

Когда-то было невероятно трудно производить элементарные расчеты, при которых приходилось складывать длинные колонки чисел, и эти затруднения побудили Блеза Паскаля сделать блистательное изобретение, которое по достоинству не оценили ни его современники, ни их дети, ни даже дети этих детей. Только через триста лет это изобретение ознаменовало новую эру в истории человечества.

Отец Блеза Паскаля Этьен был уважаемым высокопоставленным чиновником финансового ведомства при кардинале Ришелье, Людовике XIII и молодом Людовике XIV, правивших Францией на протяжении почти всего XVII в. Во Франции того времени крестьяне, ремесленники и рабочие должны были трудиться в поте лица, чтобы состоятельные буржуа, лица духовного звания и дворянство ни в чем не нуждались, чтобы богачи могли прожигать жизнь в приятном ничегонеделанье. Но государство, которым в конечном счете был король, нуждалось в деньгах. Государство, где и как могло, выжимало последние гроши из населения. От налогов были свободны только священники и аристократы.

Подробнее...

 

Счетная машина, которая функционировала абсолютно так же, как машина, созданная Паскалем, была спроектирована почти тридцать лет спустя немецким ученым-универсалом Готфридом Вильгельмом Лейбницем. В отличие от «паскалин», многие из которых сохранились до наших дней, оригинальная модель, созданная Лейбницем, до нашего времени не дошла, но сохранились копии, которые доказывают, что машина была работоспособна.

Однако вклад Лейбница в создание вычислительных машин не ограничивается изобретением копии машины Паскаля. Вклад Лейбница намного более весом, он заключается в разработке новой теоретической концепции счета: в машине Паскаля механический перенос осуществляется на соседнем левом валике, когда на правом от него валике происходит переход от цифры 9 к цифре 0. Переход же от 0 к 1 в принципе ничем не отличается от перехода от 1 к 2 или от 2 к 3. И в дальнейшем переходы происходят столь же монотонно, вплоть до перехода от 8 к 9. Только после этого при переходе от 9 к 0 снова включается механизм переноса.

Подробнее...

 

Невозможно переоценить восхищение, которое испытал Майкл Фарадей в отношении Ады Лавлейс. Дело в том, что именно новаторские работы Фарадея — лишь десятилетия спустя — легли в основу безупречно работающих числовых машин, что именно Фарадей в результате своих бесчисленных экспериментов понял и осознал тесную связь электричества и магнетизма. Он установил, что, хотя электрическое напряжение можно создать самыми разнообразными способами, в каждом конкретном случае речь идет об одном и том же явлении, пронизывающем всю природу.

Фарадей, рожденный в простой семье, не получил никакого образования, и только чтение учебников, с которыми он работал как умелый переплетчик, пробудило в нем интерес к электричеству. Фарадей сумел развить свою концепцию единства природы, не написав при этом ни единой математической формулы. Только Джеймс Клерк Максвелл, на которого произвели глубокое впечатление эксперименты Фарадея, поставил перед собой задачу облечь его открытия в математические одежды. Максвеллу удалось вывести четыре уравнения, в которых он связал воедино все проявления электричества и магнетизма. Невозможно охватить единым взором все множество явлений, основанных на электромагнетизме.

Подробнее...

 

Уотсон, победивший Кена Дженнингса и Брэда Раттера в игре «Jeopardy!», как раз и был такой числовой машиной. В ней хранились данные, закодированные в виде исполински длинных последовательностей цифр 0 и 1. Эта цифровая последовательность, преобразованная в совокупность имеющегося напряжения для обозначения 1 и отсутствия напряжения для обозначения 0, и есть сомнительный источник «знания» Уотсона. Технологический шедевр заключается в том, что это устройство создает иллюзию умения машины думать.

Редакторы новостного журнала Spiegel были настолько очарованы Уотсоном, что решили расспросить о нем какого-нибудь выдающегося специалиста по вычислительным машинам. Их выбор пал на Дэвида Гелернтера, создавшего в 1983 г. вместе со своим коллегой Николасом Карьеро язык программирования LINDA, который хорошо подходил для параллельно работающих вычислительных машин. Суть беседы репортеров Spiegel с Гелернтером заключалась в следующем диалоге:

Подробнее...

Поиск

Поделиться:

Яндекс.Метрика Top.Mail.Ru