Математика, в широком смысле слова понимаемая как всевозможное использование чисел и геометрических фигур, возникла несколько тысячелетий назад. Она создавалась усилиями многих цивилизаций, ныне исчезнувших.
На протяжении всей истории развития человечества использовались различные символические методы записи чисел при помощи специальных знаков — так называемые системы счисления.
Нравится нам это или нет, но с математикой каждый из нас сталкивается на протяжении всей жизни. Уже в возрасте 2—3 лет малыши делают первые попытки сосчитать свои игрушки. Затем азы этой науки постигаются в школе, и даже тем, чья работа не связана непосредственно с математикой, постоянно приходится что-то вычислять начиная с обычных расчетов на кассе в магазине и заканчивая, например, планированием собственных расходов и т.д.
Потребность определять количество предметов возникла у людей в глубокой древности. Считая скот, добычу, стрелы, плоды и т.д., они сопоставляли эти предметы с так называемыми счетными эталонами. Изначально наиболее распространенным счетным эталоном были пальцы.
Почему одни числа считаются положительными, а другие — отрицательными? В каких случаях используются отрицательные числа? Легче всего понять разницу между этими двумя видами чисел при помощи числовой оси.
Какие числа называются целыми?
Это все натуральные числа и те, что противоположны им по знаку, а также О (ноль).
В повседневной жизни нам приходится сталкиваться не только с целыми числами, но и с их частями» или долями. Вам наверняка доводилось слышать, а может быть, и использовать в своей речи следующие слова: «треть, четверть, две третьих и т.д.». Такие числа означают не что иное, как части целого, и являются дробями.
Уже говорилось, что числа бывают не только положительными, но и отрицательными. Отрицательные — это те же числа, но со знаком «-»: -6, -20, -45 и т.д. И на числовой оси они располагаются слева от нуля, если ось горизонтальная, и внизу от нуля — если ось вертикальная.
Знание дробей поможет разобраться с новыми понятиями: отношение чисел и пропорции. Уже известно, что дробь — это размер части предмета. Треть часа, половина пути, 2,5 кг картофеля, 0,5 л кефира — вот лишь несколько примеров употребления дробей в повседневной жизни. Когда нам приходится что-то сравнивать, т.е. нас интересует, во сколько раз один предмет меньше или больше другого, один человек старше или младше другого, во сколько раз на какой-то улице больше домов, чем на другой, и т.д., мы тоже используем дроби.
«Скидка 30%», «-50% на вторую покупку», «влажность 75%», «заряд батареи 25%», «концентрация соли в морской воде 5%»... Эти и подобные фразы не раз слышал каждый человек. Люди довольно часто используют их в повседневной жизни. А что же такое процент? Как рассчитать эту величину?
Человек давно начал познавать мир, ощупывая и рассматривая окружающие его предметы, таким образом получая сведения о форме и размерах — главных понятиях геометрии. Еще в древние времена Евклидом были сформулированы основные понятия геометрии.
До сих пор мы говорили о геометрических фигурах на плоскости. То есть о планиметрии. Стереометрия же рассматривает фигуры, которые находятся в разных плоскостях.
Стереометрия - это отдел геометрии, который изучает фигуры, не лежащие в одной плоскости.