Разработки уроков

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Начальные классы

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Русский язык

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Литература

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Английский язык

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Немецкий язык

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Французский язык

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

История

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Обществознание

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Биология

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

География

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Математика

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

 

Размножение — одно из самых специфических и самых сложных свойств жизни. Это и естественно, так как в эволюции отбор идет именно на эту способность: в борьбе за существование побеждают те организмы, которые размножаются лучше других, т. е. оставляют больше потомков, способных дожить до взрослого состояния и, в свою очередь, оставить потомство. Такая направленность отбора приводит к тому, что все особенности строения и поведения организма в конечном счете служат для размножения. Пример этому — многие насекомые: некоторые бабочки, поденки, оводы. Их взрослые формы не питаются, а появляются на несколько дней для того, чтобы осуществить оплодотворение и отложить яйца.

Известно много способов размножения: простое деление, образование отростков или почек (вегетативное размножение), размножение спорами, семенами, яйцами. И тем не менее их объединяют некоторые общие закономерности, характерные для всех способов размножения.

Подробнее...

 

Жизненный цикл обыкновенной пресноводной амебы предельно прост: она растет, увеличивается вдвое и через некоторое время делится на две дочерние клетки, каждая из которых при наличии пищи проделывает тот же путь. За время этого цикла происходят только количественные изменения — удвоение хромосом и соответственно количества ДНК в ядрах и увеличение количества клеточных структур в цитоплазме. Форма амебы после деления так же непостоянна, как и до него. Таким образом, у амебы трудно найти какие-либо проявления развития.

Жизненный цикл большинства бактерий также протекает практически без качественных изменений, т. е. без развития: бактериальные клетки растут и делятся. Однако многие бактерии способны к споруляции, а потом к прорастанию — образованию из споры функционирующей бактериальной клетки. В ходе споруляции в бактериях деградируют многие виды белков и появляются новые ферментные белки, которые участвуют в синтезе особых клеточных стенок споры. Наоборот, прорастание начинается с синтеза других белков, ответственных за выход бактерии из споры и за возвращение к нормальным функциям. Эти процессы определенно являются качественными изменениями, состоящими в смене состава молекул и в изменении формы и поведения бактериальной клетки. Поэтому их можно считать развитием или, во всяком случае, элементами развития. В ходе споруляции и прорастания закономерно включаются одни и выключаются другие гены, и это может служить моделью процессов развития, происходящих на генном уровне.

Подробнее...

 

Жизненный цикл одного из наиболее изученных видов слизневых грибов (миксомицетов) — диктиостеллиума состоит из двух последовательных принципиально различных этапов — одноклеточного и многоклеточного. Из спор образуются подвижные клетки — миксамебы, которые питаются бактериями, размножаются делением и ведут самостоятельный, независимый друг от друга образ жизни. В условиях голодания и при достаточной концентрации миксамеб они начинают собираться вместе. Сигналом, собирающим их, служит выделение особого сигнального для миксомицетов вещества — циклической АМФ (о нем еще будет сказано). Миксамебы собираются в агрегат, в который может входить от нескольких десятков до многих тысяч клеток. Из него образуется подвижный червеобразный слизень — это уже многоклеточный организм. Этот слизень может некоторое время передвигаться, а может при подходящих условиях сразу переходить к образованию плодового тела. При этом он дифференцируется на плоское основание, базальный диск, которым прикрепляется к субстрату, на длинный стебелек и на вершине его — шарообразное тело, в котором формируются споры.

Подробнее...

 

Этим термином, не очень серьезным, мы называем здесь развитие многоклеточных животных. В этой книге мы почти не упоминаем растения, и это является полным произволом авторов, который может быть лишь частично оправдан тем, что развитие растений — свой, во многом загадочный мир. Значительно проще ботанику и зоологу написать две отдельные книги — о, растениях и о животных, чем пытаться объединить две науки о них в одну.

Половое размножение животных принято рассматривать начиная с яйца («ab ovo», как говорили древние), хотя дальше мы увидим, что вопрос о том, что считать началом, не так прост и ответ на него во многом произволен. Образование яиц или вообще половых клеток — гамет, как мы уже писали, следует считать чрезвычайно удачной эволюционной «находкой», поскольку позволяет одной паре родителей оставить много потомков. При этом сами родители не исчезают, как у одноклеточных. Напротив, они обеспечивают откладку яиц в оптимальных условиях, а во многих случаях и заботу о потомстве. Вместе с тем образование многоклеточного и сложно устроенного организма из одной, пусть даже большой, клетки определяет необходимость ряда последовательных этапов развития, ряда во многом независимых процессов.

Подробнее...

 

Половые клетки — яйца и сперматозоиды — завершают свое образование в половых железах взрослого животного. Если развитие половых желез проследить назад, к эмбриональным стадиям, можно убедиться, что будущие половые клетки (их называют гоноцитами) у большинства животных не сразу становятся частью половых желез. Гоноциты удается иногда обнаружить уже на самых ранних стадиях развития и проследить их последующую судьбу. Оказалось, что они закладываются самостоятельно и мигрируют в формирующуюся половую железу на более поздней стадии развития зародыша. Этих данных о раннем обособлении половых клеток не мог знать Август Вейсман (1834–1914), но тем не менее еще в конце прошлого века он сформулировал представление о «зародышевом пути» и «зародышевой плазме», во многом сохранившие свое значение до сих пор.

Подробнее...

 

Если главный или даже единственный критерий для естественного отбора — способность к размножению, а размножаются клетки «зародышевого пути», то для чего существует «сома», т. е. весь остальной организм? Почему в ходе эволюции стало необходимо, чтобы в каждом поколении заново возникала соматическая часть организма, например лев с его гривой, клыками и когтями, сердцем и мозгом? Ответ на этот вопрос однозначен: только для того, чтобы обеспечить размножение клеток генеративной части — защитить их в зародыше, в новорожденном львенке, во взрослой львице и размножить в ее потомстве, которое останется жить и вырастет благодаря материнской заботе. Эта же мысль содержится в таком, несколько парадоксальном, выражении: «Курица — это средство, с помощью которого одно яйцо делает другое».

Соматическая часть организма служит как бы чехлом для генеративных клеток. Половые клетки различных видов животных отличаются несущественно, и общая структура (но не качество и количество заложенной в ней информации) их «зародышевой плазмы», т. е. ДНК, как вид макромолекул в ходе эволюции совершенно не изменилась. Зато «чехол» стал поразительно разнообразен — от оболочки вирусов до человеческого тела.

Подробнее...

 

Если назначение соматической части организма — быть «чехлом» для генеративной части, то можно ли говорить о биологическом смысле существования «зародышевой плазмы»? По-видимому, слово «смысл» здесь мало применимо. Однако можно говорить о содержании записанной в ДНК информации и о роли этой информации.

Так, ДНК (или РНК) вирусов кодирует белки оболочки и белки, которые обеспечивают репликацию и сборку вирусной частицы. Белков этих немного и длина ДНК соответственно невелика. Вся остальная информация, нужная для размножения вируса, записана в ДНК клеток хозяина. ДНК бактерий определяет синтез белков, необходимых для осуществления всех функций клетки, в том числе для образования спор и прорастания. Поэтому количество ДНК у бактерий в 10—100 раз больше, чем у виру сов. В ДНК многоклеточных животных содержится информация, необходимая для построения и функционирования всей соматической части организма — от структуры белков до наследуемых особенностей психики. Количество ДНК, способное закодировать эту огромную информацию, должно быть увеличено по сравнению с бактериями еще на порядок. Но фактически оно оказывается больше, чем у бактерий, в 100 или даже в 1000 раз.

Подробнее...

 

Все сказанное выше подготовило нас к ответу на основ ной вопрос: что же такое развитие? С одной стороны, развитие — это прохождение организмом последовательных стадий. Чем значительнее они отличаются друг от друга, чем разнообразнее происходящие при этом процессы, тем более сложным можно назвать такое развитие. Самым сложным является развитие многоклеточных животных из яйца. С другой стороны, развитие — это формирование и преобразование соматической части организма на основе информации, содержащейся в его генеративной части — ДНК. Поэтому можно сказать, что развитие — это реализация наследственной информации, которая определяет последовательное прохождение одной стадии за другой. Генеративная часть остается при этом неизменной (не считая редких и случайных мутаций) и передается следующему поколению. У одноклеточных организмов это оказывается возможным потому, что функционирование ДНК никак не отражается на ее первичной структуре, т. е. на последовательности нуклеотидов, в которой и закодированы все признаки и функции организма.

Подробнее...

 

Основная и, очевидно, непреложная концепция современной генетики и молекулярной биологии заключается в том, что все наследственные признаки передаются через ДНК (будь то ДНК хромосом или митохондрий и пластид). Из этого правила известны лишь одиночные исключения. Например, передача от делящейся инфузории дочерним клеткам некоторых особенностей расположения ресничек на мембране происходит посредством структуры самой мембраны.

ДНК кодирует только структуру белков. Поэтому необходимо объяснить, каким образом наследуемые свойства организма, включая все детали его строения и даже особенности поведения, создаются через белки, синтезируемые в ходе развития. Попытки такого объяснения встречают серьезные трудности. Эти трудности могли показаться непреодолимыми некоторым эмбриологам «домолекулярной» эпохи. Но для современных биологов очевидно, что здесь нет нерешаемых, а есть нерешенные проблемы.

Подробнее...

 

К вопросу о том, с чего начинается развитие, не следует относиться слишком серьезно. Обычно в литературе началом эмбрионального развития считают оплодотворение.

Однако если видеть в оплодотворении некий символ участия в развитии обоих родительских организмов, то правильнее считать началом тот, более поздний, момент, когда гены зародыша действительно начнут функционировать и в зародыше смогут проявиться не только материнские, но и отцовские признаки. Но, может быть, более правильно считать действительно началом развития образование половых клеток, и прежде всего яйца, по скольку уже тут закладываются черты следующего поколения.

Подробнее...

 

Будущие половые клетки — гоноциты иногда можно отличить уже на очень ранних стадиях развития. Классическим примером является аскарида, у которой после первого деления яйца в одном из двух бластомеров теряются концевые участки хромосом и способность стать клеткой зародышевого пути сохраняет только второй бластомер. Аналогичным образом происходит потеря нескольких целых хромосом (или даже наборов хромосом) у некоторых насекомых.

У большинства животных раннее обособление гоноцитов связано не с потерей части ДНК, она целиком сохраняется во всех клетках зародыша. Но в цитоплазме многих яиц обнаружены особые частицы — половые детерминанты. Природа этих детерминантов, их структура и механизм действия известны плохо. Вероятно, у разных видов они различны. В некоторых случаях это частицы, состоящие из РНК и белка. У рачка циклопа половые детерминанты попадают в один из двух первых бластомеров, при втором делении оказываются в одной из четырех клеток и т. д. После шестого деления, когда зародыш уже состоит из многих десятков клеток, детерминанты оказываются всего в двух клетках — гоноцитах.

Подробнее...

 

После того как гоноциты попали в половые железы, их судьба зависит от того, какие половые клетки они должны образовать — мужские, т. е. сперматозоиды, или женские, т. е. яйца. В первом случае их путь развития называют сперматогенезом, а во втором — оогенезом. Некоторые виды животных являются гермафродитами, и у них есть две разные половые железы или иногда даже одна, где образуются и яйцо и сперматозоиды. Но гораздо чаще животные раздельнополы. Это вдвое уменьшает возможности размножения: фактически размножается только половина животных. Но зато становится возможной специализация родителей — их несколько разное строение и различное поведение. Эти различия между полами, очевидно, обеспечивают лучшие условия для образования яиц, а у живородящих — и для внутриутробного развития. «Менее ценные» для размножения самцы могут играть большую роль в охране семьи, охоте, а также участвовать в половом отборе. Последнее означает, что активность самцов и их конкуренция за право предоставить именно свои сперматозоиды для оплодотворения служат важным способом естественного отбора, т. е. инструментом эволюции.

Подробнее...

 

Когда гоноциты попадают в половые железы, их не всегда можно отличить от соматических клеток — клеток стенки железы, между которыми они встраиваются. Но вот после ряда делений будущие женские половые клетки вступают на путь образования яйца. С этого момента их называют ооцитами (буквально — яйцевые клетки). Основное изменение, которое при этом бросается в глаза, это увеличение их размеров, иногда в сотни, а чаще в тысячи и миллионы раз. У одних животных рост ооцита осуществляется очень быстро — в течение дней или недель, хотя у других видов он продолжается месяцы и годы. Механизмы этого роста у разных видов животных очень различны, но в большинстве случаев этот процесс обеспечивают другие клетки организма,

Проще всего это происходит у гидры: интерстициальные клетки (і-клетки) начинают делиться и расти, а затем центральная поглощает все окружающие и превращается в большой ооцит, который после созревания (мейоза) превращается в яйцо. У губок процесс аналогичный: подвижный амебовидный ооцит ползет по телу и «поедает» другие клетки, быстро увеличивая свой размер.

Подробнее...

 

Перед ооцитом лягушки «стоит» непростая задача — за несколько месяцев (у наших лягушек это летние месяцы в течение двух-трех лет, у тропических — два-три месяца) превратиться в яйцо, которое по объему в 100 000 раз больше исходной клетки. Желток, составляющий значительную часть массы яйца, как мы знаем, поступает извне. Но все остальное, и в первую очередь РНК и белки, — собственного производства. Если даже желток составляет 90 % яйца, то количество остальных белков и РНК должно за время оогенеза стать в 10 000 раз больше, чем в обычной клетке. Концентрация митохондрий, рибосом и многих ферментов в яйце почти такая же, как в других клетках, а количество соответственно во много тысяч раз больше. Вместе с тем собственное ядро ооцита сохраняет такое же число хромосом, как и обычная клетка перед делением. Если бы ооцит рос так же, как все остальные клетки, которые удваиваются, т. е. синтезируют такое количество всех молекул, какое есть в клетке, примерно за сутки, для образования яйца потребовалось бы около ста лет! Что же происходит в ооците или, точнее, в его ядре? Несмотря на обычное число хромосом, ядро увеличивается в размерах. Это увеличение происходит по мере роста ооцита, и постепенно ядро становится в тысячи раз больше, чем в обычных клетках. Его видно невооруженным глазом, и оно было названо «зародышевым пузырьком».

Подробнее...

 

В обычных клетках синтез трех видов рРНК (28S, 18S и малой 5S) координирован, т. е. на одну молекулу 28S образуется одна молекула 18S и одна молекула 5S. Синтез 28S и 18S происходит в виде одного большого, общего для них предшественника (пре-рРНК), который затем тут же, в ядрышке, подвергается процессингу — отщеплению и распаду «лишних» кусочков РНК (транскрибированных со спейсеров), в результате чего из одной молекулы пре-рРНК получается одна молекула 28S и одна молекула 18S рРНК. Очевидно, что образование больших рРНК в эквимолярных количествах не требует специальной регуляции. Иное дело с 5S рРНК.

Эта рРНК кодируется множественными генами, которые в количестве нескольких тысяч рассеяны по многим хромосомам. Их транскрибирует особая РНК-полимераза III, транскрибирующая и другие малые РНК (например, тРНК). Очевидно, что синтез эквимолярных количеств больших и малых рРНК требует специальных механизмов регуляций, которые, однако, пока неизвестны.

Подробнее...

 

Мы уже говорили, что у позвоночных животных желток будущего яйца синтезируется в печени. Этот синтез стимулируется женскими половыми стероидными гормонами — эстрогенами (подробнее см. специальную главу). Один из таких гормонов — эстрадиол одинаково действует на печень самцов и самок амфибий и птиц. Под влиянием гормона в клетках печени включаются гены, кодирующие сложный белок — вителлогенин. Одновременно или даже немного раньше в клетках печени стимулируется дополнительное образование белоксинтезирующего аппарата — создается много новых рРНК и соответственно рибосом. Новая вителлогениновая мРНК активно транслируется, доля синтеза всех других белков снижается, а синтез вителлогенина достигает 50–70 % общего синтеза белка. Далее вителлогенин выделяется в кровь и переносится ею к ооцитам.

Если гормон был введен самцу, то у него тоже синтезируется вителлогенин, но затем он надолго остается в кровяном русле, так как включиться ему не во что. У самки же вителлогенин быстро поглощается растущими ооцитами и расщепляется в них на две самостоятельные молекулы: большую — липовителлина и маленькую — фосвитина. Вместе они складываются в кристаллоподобные гранулы желтка. Позже, в ходе эмбрионального развития, а у личинок рыб и амфибий и после него, белки желтка постепенно распадаются на аминокислоты и используются для синтеза всех новых белков. При этом освобождаются также липиды и фосфат, которые используются личинкой.

Подробнее...

 

Ооцит, достигший больших размеров, еще не яйцо. Для того чтобы стать яйцеклеткой, способной к оплодотворению и дальнейшему развитию, он должен пройти созревание. Это кратковременный, но важный процесс, так как в ходе созревания ооцит приобретает целый ряд новых свойств. Оболочка большого ядра ооцита — зародышевого пузырька — растворяется, и его содержимое смешивается с цитоплазмой яйца (ооплазмой). Хромосомы компактизуются и уменьшаются до обычных размеров. Они поднимаются к поверхности яйца и там позже завершают мейоз. Происходит овуляция, т. е. яйцо освобождается от окружающих его фолликулярных клеток, выходит из яичника и попадает в яйцевод, где окружается яйцевыми оболочками. Оплодотворение у одних животных происходит в яйцеводе (внутреннее), а у других — после выхода из него в воду (наружное).

Подробнее...

 

Оплодотворение традиционно считают началом развития. И действительно, только после слияния гаплоидного яйца и гаплоидного сперматозоида образуется диплоидная зигота — фактически самый ранний зародыш. У большинства видов животных неоплодотворенное яйцо не способно к развитию, хотя из этого правила существует довольно много исключений. Мы уже говорили, что у пчел все самцы (трутни) развиваются из неоплодотворенных яиц. Пчелиная матка осеменяется один раз, и все спермии хранятся в особом семяприемнике, соединенном с яйцеводом тонким каналом. Яйца, проходя но яйцеводу, оплодотворяются одним из спермиев, поступающим из семяприемника. Из такого яйца развивается самка. Если матка «по своему желанию» перекроет канал семяприемника, проходящие яйца окажутся неоплодотворенными. И тогда из них разовьются гаплоидные самцы — трутни. Этот механизм позволяет регулировать количество самцов в улье: их больше перед роением, когда создаются новые пчелиные семьи, и меньше, когда необходимости в неработающих трутнях нет.

Подробнее...

 

У рыб во время нереста самцы и самки обычно находятся в непосредственной близости друг от друга. Самка мечет икру, а самец в это же время выделяет спермии. Нередко это происходит в текущей воде. В таких условиях для оплодотворения необходимо, чтобы встреча гамет осуществилась в течение нескольких секунд. Однако в это время вокруг яиц создается высокая концентрация сперматозоидов, которые недолго, но активно движутся. Вероятность встречи гамет велика, и благодаря этому достигается высокий процент оплодотворения. Но вместе с тем возрастает вероятность того, что одновременно достигнет яйца не один, а много сперматозоидов. Поэтому у костистых рыб оболочка яиц имеет единственное отверстие — микропиле, в которое может войти только один сперматозоид. Проблемы полиспермии у костистых рыб просто нет. У осетровых рыб в оболочке яйца несколько микропиле и такая проблема возникает. Но в полной мере эта проблема «стоит» перед яйцами морского ежа, у них же ее «решение» лучше всего изучено.

У морских ежей половые продукты — яйца и спермии — также выбрасываются прямо в воду, причем самцы и самки могут находиться друг от друга на значительном расстоянии. Вероятность встречи спермии с яйцом в этих условиях не слишком велика. В связи с этим вся поверхность яйца способна реагировать со сперматозоидом, и эта способность сохраняется много часов.

Подробнее...

 

При контакте сперматозоида с яйцом в обеих гаметах происходят сложные процессы, обеспечивающие проникновение спермия в цитоплазму яйца. У многих видов первым на контакт реагирует сперматозоид. Эта реакция называется акросомной и состоит в том, что спермий выбрасывает вперед тонкую акросомную нить или вырост — трубочку, которая возникает в течение нескольких секунд путем выворачивания и вытягивания оболочки акросомы— структуры, которая находится на передней части головки спермия. Коснувшись мембраны яйца, акросомный вырост сливается с ней в одно целое. С этого момента спермий утрачивает подвижность, а его плазматическая мембрана оказывается как бы продолжением мембраны яйца. У многих видов в яйце в месте контакта со спермием поднимается воспринимающий бугорок, который окружает сперматозоид и втягивает его внутрь яйцеклетки.

После контакта со спермием в поверхностном (кортикальном) слое цитоплазмы яйца происходит кортикальная реакция. У неоплодотворенных яиц в этом слое располагаются особые кортикальные гранулы. Реакция состоит в том, что содержимое этих гранул как бы изливается под оболочку яйца, которая при этом отслаивается и отходит от поверхности яйца, часто на значительное расстояние. Кортикальная реакция начинается в месте прикрепления сперматозоида и довольно быстро распространяется по всей поверхности яйца. В маленьком яйце морского ежа при температуре 15–20° это занимает 10–20 с, в большом яйце белуги — 5 мин. Полагают также, что активация яйца приводит к выделению им в воду ионов кислорода (О-), инактивирующих другие сперматозоиды.

Подробнее...

 

Сперматозоид втягивается в яйцо не целиком. У многих видов животных он оставляет снаружи хвост, а иногда и среднюю часть. Фактически внутрь яйца проникают лишь ядро и центриоли— компоненты аппарата клеточного деления. Вместе со средней частью в яйцо могут попасть и отцовские митохондрии, но никакой роли в последующем развитии они не играют. Вошедшее ядро быстро изменяется. Оно набухает и приобретает вид светлого пузырька. В нем происходит смена белков хроматина: специальные белки головки сперматозоида, обеспечивающие особо компактную укладку ДНК, заменяются на обычные — гистоны и негистоновые белки. Такое ядро называется мужским пронуклеусом.

Одновременно с мужским пронуклеусом образуется и женский. У одних видов (например, у морского ежа) он уже сформирован к моменту оплодотворения. Чаще же зрелое неоплодотворенное яйцо останавливается на стадии первого деления мейоза. Проникновение спермия или искусственная активация запускает этот процесс, и он быстро заканчивается образованием гаплоидного ядра — женского пронуклеуса. Два пронуклеуса сближаются друг с другом. Через некоторое время начинается первое деление дробления. При этом отцовские и материнские хромосомы объединяются в одном, теперь уже диплоидном, ядре.

Подробнее...

 

При оплодотворении хромосомы обоих родителей только объединяются в одном ядре. Однако функционировать в качестве источника генетической информации они начинают не всегда сразу. Поэтому начало развития зародыша, если рассматривать его как процесс реализации отцовской и материнской наследственности, может быть, правильнее считать не с момента оплодотворения, а позже.

Молекулярным проявлением функции генов, как мы знаем, является их транскрипция, т. е. синтез РНК. У видов, яйцеклетки которых невелики, синтез РНК можно обнаружить довольно рано — уже после первых делений яйца. Ho у рыб и амфибий, имеющих крупные яйца, транскрипция обнаруживается только тогда, когда число клеток достигает нескольких тысяч. У всех животных РНК начинает синтезироваться не позже бластулы и первый процесс формообразования всегда происходит под контролем собственного генома зародыша.

Подробнее...

 

В оплодотворенном яйце, зиготе, синтез РНК редко начинается сразу, а если и начинается, то играет малоспецифическую роль, т. е. определяет не собственно процессы развития, а синтез рРНК, тРНК, образование гистонов и т. д., которые необходимы для построения хромосом и создания белоксинтезирующего аппарата. Начало ядерной функции, определяющей развитие, или морфогенез (отсюда — морфогенетическая функция ядер), очевидно, зависит от многих обстоятельств, и прежде всего связано с размерами яйца: у всех видов, имеющих «маленькие» яйца (30—200 мкм в диаметре), гены начинают работать раньше, а у видов с «большими» яйцами (от 0,3 мм и выше), как у рыб и амфибий, — значительно позже. Птицы в этом отношении изучены хуже.

Причины таких различий легко объяснить. РНК, синтезированная в одном или даже в нескольких десятках ядер, в течение первых часов раннего развития не может оказать существенное влияние и изменить синтез белка в огромных объемах цитоплазмы большого яйца. И только на стадии многих сотен или тысячи клеток, когда каждое ядро будет окружено небольшим участком цитоплазмы, синтез новых РНК сможет заметно повлиять на состав синтезируемых белков в данной клетке.

Подробнее...

 

Начало работы генов, точнее, их экспрессию можно заметить по проявлению отцовских признаков, если эти признаки отличаются от материнских. Действительно, когда у зародыша появляются черты, присущие отцовскому организму, но отсутствующие у материнского, не остается сомнений, что отцовские гены начали работать (одновременно с ними обычно начинают работать и гены в хромосомах, полученных от матери). Трудность тут состоит в том, что обычно признаки, отличающие двух животных одного вида (например, окраска), проявляются только на поздних стадиях, когда мы и без того знаем, что гены давно уже начали работать.

Эту трудность можно частично преодолеть, если использовать межвидовые, межродовые и даже межсемейственные гибриды, у которых отличия родительских организмов были бы достаточно велики и могли бы проявляться на более ранних стадиях. Получение отдаленных гибридов хорошо удается у морских ежей, у рыб, хуже — у птиц и почему-то совсем плохо у амфибий. Во всех опытах, проведенных на гибридах, было показано, что их развитие начинается неотличимо от развития материнского организма. Этого и следовало ожидать: ведь на самых ранних стадиях гены, в том числе и отцовские, еще не работают. Отцовские признаки проявляются обычно позже — у более дифференцированных зародышей или даже только у ранней личинки.

Подробнее...

 

Когда мы до сих пор говорили о начале функционирования ядер, или, конкретно, о начале синтеза РНК, речь, естественно, шла об одновременном включении сотен, если не тысяч генов, — включение одного или десяти генов мы просто бы не заметили. По-видимому, в раннем развитии существует общий механизм, включающий одновременно транскрипцию сразу в очень многих точках хромосом. Однако должна существовать и другая регуляция, определяющая, почему в число этих тысяч генов попал именно данный ген, а не соседний. По другой развиваемой сейчас гипотезе, которую мы подробно обсудим в одной из последующих глав, включаются и работают, может быть, почти все гены, но некоторые из них транскрибируются намного интенсивнее, и, помимо этого, процессинг затрагивает только нужные про-мРНК, а остальные разрушаются и даже не выходят из ядра. Пока же мы будем обсуждать эту проблему в «классических» представлениях о включении и выключении генов.

Включение отдельных (индивидуальных) генов происходит не только в раннем развитии, но и на всем протяжении клеточной дифференцировки. Этот процесс является одной из главных проблем и для молекулярной биологии, и для биологии развития. Хорошей моделью для его исследования может служить включение в эмбриональном развитии отдельных генов, кодирующих тот или иной фермент, о чем мы можем судить по появлению самого фермента.

Подробнее...

 

Проблема возникновения различий между клетками имеет длительную историю: попытки ее экспериментального решения предпринимались еще в конце прошлого столетия, а теоретические споры преформистов и эпигенетиков восходят к XVII в. Сейчас уже стали известны некоторые важные механизмы, ответственные за дифференцировку клеток зародыша в разных направлениях. Однако до сих пор в этой области больше неясного, а многое еще остается совершенно непонятным.

Этот раздел биологии развития находится почти вне всякой связи с генетикой и молекулярной биологией, а существующие гипотезы носят пока умозрительный характер. Поэтому здесь во многом сохранились чисто феноменологические понятия, т. е. используемые термины являются лишь условными обозначениями того или иного явления. В связи с этим нам кажется правильным начать эту главу с общих представлений, без которых трудно войти в мир экспериментальной эмбриологии, или, как ее еще называли, механики развития.

Подробнее...

 

В 20-е годы немецкий ученый Фогт сумел проследить судьбу разных частей яйца в развитии. Для этого он окрашивал небольшие участки бластулы амфибий безвредными витальными красителями и наблюдал движение этих участков во время гаструляции и их последующую судьбу. Так была составлена нанесенная на рисунок бластулы карта презумптивных зачатков, т. е. обозначены те клеточные территории, которые при нормальном развитии станут теми или иными зачатками, а потом и органами. Важно подчеркнуть, что презумптивная судьба клеток реализуется только при нормальном развитии. В эксперименте же их судьбу на этой стадии еще нетрудно изменить. Задача биологии развития во многом и заключается в том, чтобы выяснить во всех подробностях, как происходит реализация этой карты. Или, иначе, каким образом расположенные рядом районы, состоящие на стадии бластулы фактически из одинаковых клеток, становятся зачатками разных органов, клетки которых по мере развития все больше отличаются друг от друга.

Подробнее...

 

Этим термином обозначают возникновение различий между разными частями цитоплазмы яйца (ооплазмы), разделение (сегрегацию) яйца на зоны с несколько различными свойствами. Обычно ооплазматической сегрегацией называют те перемещения компонентов цитоплазмы, которые происходят после оплодотворения и до начала дробления яйца. В действительности же многие процессы ооплазматической сегрегации осуществляются еще в оогенезе, а некоторые продолжаются и в ходе первых делений дробления.

Простейшая ооплазматическая сегрегация происходит в яйцах морского ежа. После четырех делений дробления бластомеры отличаются по способности образовывать некоторые структуры зародыша (султан на анимальном полюсе и кишку на вегетативном). Эта способность меняется вдоль анимально-вегетативной оси. Такое постепенное изменение свойств яйца называют градиентами. У некоторых видов морских ежей эти градиенты проявляются в виде распределения пигментных гранул, располагающихся близко к одному полюсу или образующих кольцо в области экватора.

Подробнее...

 

В «классической» механике развития эмбриональной индукцией называют такое влияние одной ткани на другую, соседнюю, которое вызывает в месте контакта новую дифференцировку. Иногда (обычно в искусственной экспериментальной ситуации) индуцирующая ткань (индуктор) уподобляет индуцируемую ткань себе (гомотипичная индукция). Ho в нормальном развитии индуктор вызывает в индуцируемой части второй ткани новую, третью дифференцировку. Таким образом, эмбриональная индукция приводит к увеличению числа клеточных типов и этим усиливает дифференциацию зародыша.

Главной моделью и объектом большинства исследований была и есть так называемая первичная эмбриональная индукция у амфибий, когда в ходе гаструляции или тотчас после нее зачаток хордомезодермы вдоль спинной стороны зародыша индуцирует в эктодерме над собой зачаток нервной системы — нервную пластинку, которая свертывается в нервную трубку и дифференцируется в головной и спинной мозг. Остальная эктодерма почти целиком становится эпителием кожи, и только на границе эктодермы и нервной пластинки узкая полоска ткани (нервный гребень) превращается в мигрирующие клетки, которые участвуют в образовании хряща и пигментных клеток кожи. Если зачаток хордомезодермы еще в самом начале гаструляции удалить, нервной системы не образуется, если же этот зачаток пересадить под раннюю эктодерму на боку или животе другого зародыша, то там образуется вторая нервная система.

Подробнее...

 

В эту категорию попадают многочисленные случаи, когда мы почти ничего не знаем о механизмах дифференцировки. Пожалуй, наиболее изучена сейчас первичная дифференциация зародыша млекопитающих на собственно зародыш и внезародышевое образование — трофобласт, из которого потом возникает часть плаценты.

До стадии 16 клеток зародыш млекопитающих практически не дифференцирован, хотя наружные клетки уже площе внутренних. При нормальном развитии эти наружные клетки станут трофобластом, а внутренние (по некоторым данным, их всего три) — собственно зародышем. Ho если на этой стадии клетки механически перемешать, разделить зародыш пополам (по восемь клеток) или, напротив, соединить два зародыша вместе — развитие будет идти нормально. Это означает, что на стадии 16 клеток их судьба еще не предопределена, они не детерминированы.

Оказалось, что фактором дифференцировки является само положение клеток: если они на стадии 16 клеток и позже окажутся снаружи, их развитие необратимо пойдет в сторону трофобласта. Неясно, происходит ли это потому, что нечто в среде индуцирует в наружных клетках этот путь развития, или, наоборот, его детерминирует вымывание из наружных клеток каких-то компонентов в среду. Очевидно, что в этом случае раннему зародышу «было нужно» найти какой-либо сигнал, который позволил бы по-разному определить судьбу наружных и внутренних клеток. Для этого и был использован один из двух способов отыскания такой позиционной информации: преимущественное получение или выделение веществ наружными клетками.

Подробнее...

 

Гормонами называют биологически активные вещества, которые синтезируются в одном органе, а действуют на клетки других органов. В отличие от индуцирующих веществ гормоны обычно не распространяются путем диффузии к соседней ткани, а равномерно с кровью или гемолимфой разносятся по всему организму и в принципе могли бы действовать на все виды клеток. Однако гормоны действуют только на определенные клетки («клетки-мишени») и в разных видах чувствительных к ним клеток вызывают различный эффект. Это означает, что, как и в случае контактной индукции, специфика ответа больше зависит от клеток-мишеней, а гормон определяет лишь время наступления эффекта.

Подробнее...

 

Если гормон равномерно распределяется по всему организму, то он принципиально не может создавать различий между совершенно одинаковыми клетками. Действительно, если клетки одинаковы, то и их реакция на любые внешние воздействия, в том числе и на гормон, будет одинакова. Если же две группы клеток реагируют на один и тот же гормон различно, то это само по себе означает, что чем-то эти клетки отличались и до того, как на них подействовал гормон.

Некоторые наблюдения, казалось бы, не согласуются с этим утверждением. Например, клетки кожи, покрывающей спину и хвост головастика, внешне (под микроскопом) не отличаются друг от друга. Ho под влиянием гормона щитовидной железы — тироксина клетки кожи хвоста лизируются (рассасываются) вместе со всем хвостом. В то же время клетки кожи спины не погибают, а подвергаются характерным изменениям, которые превращают кожу головастика в кожу лягушки: она иначе пигментирована, имеет многочисленные железы и т. д. Если кусочек кожи хвоста пересадить на спину, то после действия тироксина она и на новом месте начинает рассасываться. Эти опыты показывают, что в действительности кожа.

Подробнее...

 

Стероидные гормоны являются относительно простыми органическими соединениями с небольшим молекулярным весом. О механизме их действия известно сейчас больше, чем о действии других гормонов. Скелет стероидных гормонов образован четырьмя углеводородными кольцами, и все разнообразие достигается за счет боковых групп — метальных, гидроксильных и др. Хотя сейчас известны десятки стероидных гормонов и их активных аналогов, общее число этих соединений, которые в принципе могут существовать, не превышает двухсот. Тем не менее в это число у позвоночных входят гормоны с совершенно различным действием — мужские половые гормоны (андростероны), женские половые гормоны (эстрогены), а также неполовые стероидные гормоны надпочечников — кортикостероиды.

Половые стероидные гормоны у позвоночных синтезируются в половых железах, и их синтез стимулируется гонадотропными гормонами гипофиза. У личинок насекомых стероидный гормон линьки — экдизон (экдистерон) синтезируется параторакальными железами.

Подробнее...

 

Полипептидные гормоны известны, по-видимому, еще далеко не все. Среди них есть настоящие белки, хотя и небольшого молекулярного веса, а есть и полипептиды, состоящие всего из 8—11 аминокислот, замкнутых в кольцо. Настоящие белки синтезируются обычным для белков путем: ген мРНК белок. Некоторые же короткие полипептиды синтезируются без трансляции на рибосомах, но при помощи нескольких ферментов, которые последовательно «приставляют» по одной аминокислоте к строящейся цепочке.

Большая часть белковых гормонов синтезируется в гипофизе. Среди них можно назвать уже упоминавшийся гонадотропный гормон, стимулирующий целый ряд процессов, связанных с размножением, и в том числе синтез половых гормонов в половых железах; тиреотропный гормон, активирующий синтез тироксина в щитовидной железе; гормон роста (соматомедин), необходимый для роста животных и человека (без него люди и животные остаются карликами); пролактин, стимулирующий дифференцировку молочных желез и синтез в них казеина — белка молока. Кроме того, в гипофизе образуются и низкомолекулярные полипептидные гормоны, действующие не на дифференцировку клеток, а на физиологические процессы. Это окситоцин и вазопрессин, влияющие на работу сердца и на кровяное давление.

Подробнее...

 

Тироксин (или, точнее, тироксины) представляет собой низкомолекулярное соединение, состоящее из двух молекул тирозина, к которым присоединено несколько атомов йода. Поэтому нехватка йода в пище приводит в некоторых горных районах к тяжелой болезни щитовидной железы — зобу. Эта болезнь, однако, легко предупреждается добавлением в пищу микроколичеств йода. Другие заболевания щитовидной железы, создающие избыток тироксина, вызывают у человека базедову болезнь с характерными выпученными глазами. У взрослых животных тироксин является гормоном, влияющим в основном на интенсивность метаболизма и, в частности, энергетического обмена. Объектом такого действия тироксина являются митохондрии, в которые он проникает. Однако в эмбриогенезе и личиночном развитии действие тироксина совсем иное — он влияет на морфогенез, и это его действие осуществляется через генетический аппарат.

Подробнее...

Поиск

Поделиться:

Физика

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Химия

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

ОГЭ и ЕГЭ

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Педагогическая копилка

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Школьный психолог

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Переменка

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net
Яндекс.Метрика
Рейтинг@Mail.ru